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Considering the barotropic instability problem of the mean westerly current in 
the atmosphere we have performed a series of experiments in a rotating vessel 
(using water and a barotropic model) to study the behaviour of a zonal asym- 
metric basic current with respect to small perturbations. I n  the centre of a 
rotating cylindrical vessel (of large diameter and rotation rate w )  a smaller 
cylinder was installed, the rotation of which relative to the vessel, at a rate Aw, 
generates a nearly two-dimensional field of mean relative motion within a 
sharply defined region. The dominant zonal velocity component V shows 
monotonic radial decrease within this so-called friction zone. Now what happens 
if the relative rotation of the inner cylinder, the source of momentum, suddenly 
vanishes, i.e. A o  = 02 The main result is that the basic zonal current V, which 
now has an asymmetric radial profile (V = 0 at the inner cylinder and the outer 
edge of the friction zone), breaks down into vortices, the number of which, the 
integer wavenumber n, is a function of the parameter 6 = Ao/w alone: n = n(e); 
increasing E effects a decrease of n. For a theoretical discussion of the experi- 
mental results we assume this to be a problem of barotropic instability and base 
our analytical considerations on the two-dimensional non-divergent vorticity 
equation, frictional forces being neglected. By applying a perturbation method 
and prescribing a realistic asymmetric basic current we can derive the relation 
v = ([$./In (e + 1)*12 + 114, which yields the real wavenumber Y as a function of 
the parameter E = h / w .  The analytical results are in good agreement with the 
experiments. 

1. Introduction 
Recently, in the course of an investigation of angular momentum exchange 

in a rotating fluid (Dunst 1972) the steady-state phenomenon of the so-called 
‘friction zone’ has been studied in some detail. This friction zone produced by a 
concentrically rotating inner cylinder acting as a source of momentum can be 
characterized in the following way. (i) It is restricted to a narrow area around the 
inner cylinder; only in this area do we find a field of relative motion. (ii) Essenti- 
ally its radial extent b is a function of the two parameters R and E :  b = F(R, E ) ,  

where R is the radius of the inner cylinder and E = Awlw = (n2 - n,)/n, (n, and n2 
are the rotation rates in revolutions per minute of the vessel and the inner 
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cylinder, respectively). I n  the case E > 0 a simple formula for b which is in good 
agreement with the experimental results can be derived: b = R[(E + 1)4 - 11. 
(iii) The field of mean zonal motion within the friction zone is nearly two-dimen- 
sional; the dominant zonal velocity component V decreases monotonically from 
the inner cylinder to the outer edge of the friction zone. 

Now the obvious question arises as to  what will happen if after producing a 
friction zone the relative rotation of the inner cylinder is stopped suddenly 
(Am = &7r (n, - n,) = 0) ,  i.e. the source of momentum vanishes. For a short time 
after Aw is set to zero the mean nearly barotropic zonal velocity component V, 
which is now zero a t  the inner cylinder, reaches its maximum value a short 
distance off the cylinder before decreasing again towards zero a t  the outer 
boundary. This asymmetric radial profile for V resembles to a fair degree certain 
jetstream-like flows and the proper question now to be answered is how such 
mean currents will behave with respect to small perturbations; whether or not, 
for example, they will break down into vortices. 

The experimental and analytical approach to this problem will be confined to 
the cases where e > 0,  because then the friction zone, which serves as the initial 
state of our problem, can best be realized experimentally and be represented 
through a simple analytical formula. 

This investigation is connected with the problem of the barotropic stability of 
the mean westerly current in the upper atmosphere (Kuo 1949; Long 1960; 
Lipps 1962) because in either case the basic current possesses a non-uniform 
lateral profile. 

2. The experiments 
For the experiments the following model arrangement was used (see figure 1). 

A cylindrical Plexiglas vessel 2, (diameter 100cm, height 50cm), filled with 
water to a height of 20cm (with a free surface), rotates around a vertical axis 
with angular velocity w s-l, where w satisfies the relation w = &7rn1, n, being in 
revolutions per minute; in our experiments 0 < n, < 50. I n  the centre of Z, 
a smaller inner Plexiglas cylinder Zi is installed, and can rotate independently 
around the same axis with angular velocity w' = g57rn2; 0 < n, < 80r.p.m. The 
rotation rate of Zi relative to the vessel (system of reference) is given by 
Aw = w' - w = $yr(n, - n,). The flow in the vessel is made visible using different 
coloured agents, which diffuse into the water through a very small slit (0.2 cm 
wide) on the bottom between the inner cylinder and the wall of the vessel. The 
field of relative motion can be photographed from above by a camera attached 
to the rotating vessel. 

As the initial state in our experiments we consider a friction zone (steady state) 
of limited radial extent, which is produced by a certain relative rotation of the 
inner cylinder, the essential parameter being the ratio e = Aw/w = (n, - n,)/nl. 
In  the case e > 0, to which our experiments are confined, the radial extent b of 
the friction area can be calculated by the formula, already mentioned above, 
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FIGURE 1. View of experimental arrangement in the initial state. 2, is a cylindrical 
Plexiglas vessel with angular velocity 0 (diameter 100 em), Zi the inner Plexiglas cylinder 
with angular velocity w' ; b the radial extent of the friction zone, V the mean relative motion 
and 5 the zonal component of V, having a monotonic radial profile. 

where R is the radius of the inner cylinder. Moreover, both the turbulent character 
ofthe initial state and the monotonic radial decrease of E ( T )  (the zonal component 
of the relative motion T) depend upon 6 .  The turbulent intensity grows with 
increasing values of B,  whereas a5/ar is reduced. e > 0 means that the inner 
cylinder rotates in the same direction as the vessel but faster. In  analogy with 
meteorological practice, the counter-clockwise rotation of the vessel is called 
cyclonic; then for B > 0 we have anticyclonic shearing vorticity: a@/& < 0. In 
figure 1, the shaded area schematically represents the friction zone with the 
radial profile of V. 

It should be mentioned here that in addition to F the water temperature, which 
affects the kinematic viscosity, i.e. the energy dissipation, may also have some 
influence on the turbulent intensity of the initial state. This may be important 
for o < F < 1, where only a relatively small amount of turbulent energy is avail- 
able. To eliminate such possible temperature effects all experiments have been 
performed a t  a constant water temperature of 18°C. 

Now, a typical experiment runs as follows. After a certain friction zone has 
been generated, the source of momentum is suddenly removed by setting 
AU = (n,-nl) = 0. Only a few seconds later wavelike disturbances of the 
zonal flow occur, and grow rapidly, until the whole flow falls into several vortices, 
which by and by will lose their energy by direct dissipation or disintegrate into 
even smaller vortices. 

The following six experiments, the data for which are listed in table 1, have 
been chosen as characteristic examples for the phenomenon. By using some 
coloured dye and strewing the surface with very small plates (0.08 cm diameter) 
the individual phases of the experiments could be viewed and photographed 
from above, the coloured regions being reproduced by dark tones; see figures 2-7 
(plates 1-6). 
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Experi 
ment 

1 

2 

3 

4 

5 

6 

Water 

---, ofZ;, ture 
Initial state Radius tempera- 

€ 

0.33 

0.66 

1.0 

3.0 

5.0 

16-0 

n, n2 R(& ( O C )  Figures 

30 40 7.5 18 2 (a)-(c) (plate 1); time after Aw = 0:  

30 50 7.5 18 3 (a)-(c)  (plate 2);  time aftar Aw = 0: 

25 50 5.0 18 4 (a)-(c) (plate 3); time after Aw = 0:  

10 40 7.5 18 5 (a)-(c) (plate 4); time after Aw = 0: 

5 30 5.0 18 6 (a)-(c) (plate 5) ;  time after A o  = 0 :  

3 51 5.0 18 7 (a)-(c) (plate 6); time after Aw = 0 :  

TABLE 1. Data for the six experimental examples 

(a) 50 s ,  ( b )  80 s, (c) 1-10 s 

(a) 15 s, (b) 30 s ,  (c) 45 s 

(a )  20 s, ( b )  35 s, (c) 55 s 

(a) 15 s ,  ( b )  20 s ,  (c) 25 s 

(a) 25 s ,  ( b )  35 s, (c) 50 s 

(a) 15 s, ( b )  40 s, (c) 55 s 

3. Experimental results 

For a short time after setting Ao = 0 the zonal velocity component 5 shows 
a non-uniform radial distribution, which is illustrated schematically by figure 8. 
At the inner cylinder V va,nishes, whereas only a short distance off the cylinder 
u will reach its maximum value before decreasing again monotonically towards 
zero a t  the outer boundary of the friction zone. This asymmetric radial profile of 5, 
similar t o  certain jetstream-like velocity profiles in the atmosphere, depends 
upon E in a characteristic way, such that increasing 6 results in an increasing 
asymmetry. Unfortunately we were not able to verify the exact form of the 
profile V (r,  e)  by direct measurements. 

Basic current 

- 

Decay of basic motion 

The main experimental result is that the basic motion breaks down into vortices, 
the number of which, the wavenumber n, is a function of E alone, in that increasing 
E effects a decrease of n. As our experiments have proved, there is no dependence 
on the radius R of Zi, for R varying in the range 5 < R < i 5  crn. 

I n  figure 9 the observed integer wavenumbers n are plotted against the corre- 
sponding values of 6. Each experiment was repeated six times. Solid circles 
represent those experiments which yielded the same wavenumber six times (for 
the same 6).  Open circles denote the cases where the same n was obtained only 
four times; in the remaining two repetitions another wavenumber was found for 
the same e; these are marked by triangles. 

It should be added here that in a more precise sense each of the vortices referred 
to is a pair consisting of a strong and almost circular cyclonic vortex and a 
smaller, weak and distorted anticyclonic vortex. But this structure can only be 
identified for the range 2 < e < 14; for smaller and greater values only cyclonic 
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FIGURE 8. View of experimental configuration in the non-steady state after Aw = 0 (at 
the first moment). Z,, Z+, b and V are as in figure 1 (w' = w ) .  V, the zonal component of V, 
has a jetstream-like radial profile. 
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vortices can be observed. For 0 < E < 1 the small cyclonic vortices remain near 
the inner cylinder, their rotational energy being gradually dissipated. For greater 
values of E the vortices drift into the outer region of the vessel (see figures 6 and 7, 
plates 5 and 6). 

As our experiments have revealed, we always find the wavenumber 2 (two 
vortices) in the range 5 < E < 15 (see figure 7); but with increasing E within this 
interval the radial extents of the two cyclonic vortices become more and more 
different, being approximately equal for E = 5 (see figure 6), until we observe 
only one large vortex for E = 15 (or 16) (see figure 7).  

4. Theoretical discussion 
DeJinition of the problem 

For a theoretical treatment of the phenomena described above we assume this 
to be a problem of barotropic instability. An asymmetric basic current G(r, E ) ,  

which is allowed to vary in radial direction only and has to satisfy certain 
boundary conditions, is affected by small perturbations. Now the question is how 
this current will react to these perturbations. Frictional forces will be neglected. 

Our considerations are based on the two-dimensional non-divergent vorticity 
equation, which describes our barotropic motion. This equation states that for 
any fluid element the vertical component of absolute vorticity is conserved. The 
absolute vorticity includes both the relative vorticity due to motion relative to 
the vessel and the constant vorticity 2w of the vessel’s rotation. 

I n  cylindrical co-ordinates (r ,  $) (see figure 10) the vorticity equation and the 
equation of continuity take the forms 

a a7 a7 - ( ry)+(ru) -+v-  = 0, at ar a$ 
a(ru)/ar + &/a$ = 0, (3) 

where y = r-l (a(rv) /& - au/ar$) denotes the relative vorticity, u the radial and 
‘u the zonal velocity component relative to the vessel. 

The perturbation equations 

Let us consider a motion slightly disturbed from a pure zonal basic current: 

v = 5(r ,e)+d(r ,$ , t ) ,  u = u’(r,$,t). (4) 

Then the perturbations u‘, v’ and 7’ satisfy the linearized equations 

i a  - 
with 7 = -- (rv), f = R < r 6 R+ b = R(s+ l)&, 

r dr 

if (1) is used for the radial extent b of our initial field of motion. 
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FIGURE 10. Cylindrical co-ordinates (T ,  d).  o and 0’ are the angular velocities of the vessel 
and the inner cylinder around the vertical axis. R is the radius of the inner cylinder. 

Now it is possible to set up an ‘equivalent’ plane motion by defining the 
following dimensionless quantities : 

t, = tvo/R, x = q5, y = In (r /B) ,  0 < y < In (B + I)+, 

- VR I rur I rv’ I 4/27’ , u = -  2, =-  7 =-. 
rvo  * RvO’ * Xuo’ * Rv, 

w = -- 

Here vo is the initial value of V a t  the inner cylinder before Aw = 0: vo = E(R). 
Then dropping the asterisks we can write for the new perturbation variables 

with 

The boundary conditions are 

~ ’ ( 0 )  = u’(1n ( E +  I)*) = 0. (9) 

These equations are identical with the equations for a small disturbance in a two- 
dimensional flow in Cartesian co-ordinates, if we work with the vorticity gradient, 
which is here a little bit more complicated. The mathematical theory can be 
derived along the same lines without essential modifications (Foote & Lin 1950). 

Now employing (8) we define a stream function for the perturbed motion: 

with v a real dimensionless wavenumber and c a dimensionless phase velocity, 
which may be complex: c = c, + ic,. If ci + 0, the stream function contains a term 
exponential in time, i.e. the wave is amplified if ci > 0 and damped if ci < 0; the 
neutral wave is characterized by ci = 0. 
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On substituting (10) and (11)  into (7) we obtain an equation for &I): 

(in this connexion the prime denotes differentiation with respect to y) ;  the 
boundary conditions (9) take the form 

$(o) = q5 (In (e+ I)+) = 0. (13) 

Equations (12) and (13) describe a well-known eigenvalue problem. 

The basic current 

T o  solve the above eigenvalue problem we have to prescribe the basic current W 
in the interval 0 < y 6 In (e+ I)$. For W we take 

w = A + e-v {a, sin [ (a2 - I )t y] + a, cos [ (a2 - I )+ y]}, (14) 

assuming that this form will yield an adequate approximation to the actual 
velocity distribution with special consideration of the asymmetric structure. 
Equation (14) contains two special parameters A and a and two coefficients 
a, and a2. From the conditions W ( 0 )  = G(ln (e+ I)*) = 0, u1 and a, can be 
determined: 

= A B ,  a2= - A .  (15) 1 cos ((a2 - 1): In (e + I)*) - (e + 1); E sin(($- i ) i In(e+ i)t) a, = A 

I n  order to guarantee Wmax = 1 the parameter A ,  an arbitrary dimensionless 
velocity, may be defined by 

where 

A = I/pmax, (16) 

Fmax = max { 1 + e-v [B sin ((a2 - 1)t y) - cos ( (a2 - l)* y)]}, 

o < y < In(€+ I)&. 

The quantity a is a characteristic parameter of the velocity profile W which 
reflects the structure of the observed profile (asymmetry and rate of decrease) 
and is based upon the dependence on e. 

Therefore the following relation for a seems to be reasonable: 

a = [(@/ln ( E +  l ) t ) z +  119, e > 0, i.e. in practice B > 0-2. (17) 

This relation guarantees that for increasing e the asymmetry of the velocity 
profile increases and its rate of decrease diminishes a t  a realistic rate (see figure 
11). I n  addition, the form of a has the effect of simplifying (15) in the right way: 

a, = A{1+ [a(€+ I)]+}, a, = - A .  (45a) 

With (15a), (16) and (17) we obtain from (14) 

;iij = (Fmax)-l (1 + e-v [{ 1 + ( ~ ( e  + I) )t} sin Sy - cos Sy]}, (18) 
6 = (a2 - 1)4 = :./In (E  + 1 )t, o < y < In (8  + 1 )i. 

Figure 11 shows three velocity profiles according to (18) for e = 0.66, 3.0 and 
16.0. As a measure for asymmetry we define 

As = Ymax/Yb = ymax/ln ( E  + 1)'- 
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FIGURE 11.  Basic currents W(y) for e = 0.66, 3.0 and 16.0. 

A, = 0.5 then denotes symmetry. Calculating A, for the three profiles in figure 11 
we find a 6 yo deviation from symmetry for B = 0-66, 16 yo for B = 3.0 and 30 % 
for B = 16.0. 

Using (18) the vorticity gradient d%j/dy takes the form 

a7 a 2 5  ac 
dy - dy2 d y  

- - + 2 -  = a'(A-E). 

Introducing (19) into (12) we obtain 
A - Z  

$h"-l++a2-$h = 0. 
c - w  

T h e  neutral wave 

Now, looking for the neutral solution, c = c,., ci = 0, the proper aim of the theo- 
retical consideration, we proceed on the criterion that, if a neutral disturbance 
is to exist, dqldy must vanish at all points yc where E = c. 

Relation (19) then yields 
dT/dy = a2(A-E) = 0, 
- ~ ( y , , )  = A = c > 0. 

c is the real phase velocity (dimensionless) of the neutral wave satisfying the 
condition 

A is defined by (16). From (20) it  follows that the equation for the neutral wave is 

$1' + A24 = 0 (A2 = a2 - Y 2 ) ,  

q!~ = R sin hy, h = mn-/ln (B + I)& 

(21) 

with the boundary conditions (13). This eigenvalue problem has the solution 

( 2 2 )  
K an arbitrary constant, m = I ,  2 ,  ... . 
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If we take the first eigenvalue and substitute relation (17 )  for a, equation (22) 
yields the real wavenumber v as a function of e for the neutral wave: 

(23) v = (a2-Az)i  = {@n/In(e-- 1)*]z+ IF. 
The solid curve in figure 9 represents relation (23). 

Conclusion 

By applying Lin’s method of calculation (1953, 1966) it can now be proved on 
the basis of relation (23) that in our case all waves with an integer wavenumber n 
smaller than the neutral v (for the same E )  should amplify, whereas waves with 
a wavenumber n greater than this v will be damped. A comparison with the 
experimental results (see figure 9) confirms the theoretical considerations. All 
unstable amplifying waves occurring in the experiments have an integer wave- 
number n which is smaller than the corresponding v ;  in almost all cases the n 
which is the nearest integer to v, i.e. that  corresponding exactly the first wave- 
length, which should amplify according to theory and corresponds to the shortest 
of the possible wavelengths, is selected from the spectrum. 

As in our experiments, the basic currents described by the analytical expression 
(18) are unstable, because the condition for instability, that difldy must vanish 
somewhere within the y interval, is satisfied. So all things considered the special 
choice of Z5 may be a sufficiently realistic approximation of the actual profile. 

The author is indebted to Prof. G. Fischer and Mr K. Hinrichsen for useful 
advice during the course of this investigation. 

R E F E R E N C E S  

DUNST, M. 1972 An experimental and analytical investigation of angular momentum 

FOOTE, J. R. & LIN, C. C. 1950 Some recent investigations in the theory of hydrodynamic 

Kuo, H. L. 1949 Dynamic instability of two-dimensional non-divergent flow in a baro- 

LIN, C. C. 1953 On the stability of the laminar mixing region between two parallel streams 

LIN, C. C. 1966 The Theory of Hydrodynamic Stability, pp. 122-123. Cambridge University 

LIPPS, F. B. 1962 The barotropic stability of the mean winds in the atmosphere. J .  Fluid 

LONG, R. R. 1960 A laminar planetary jet. J .  Fluid Mech. 7, 632-638. 

exchange in a rotating fluid. J .  Fluid Mech. 55, 301-310. 

stability. Quart. Appl. Math. 8 ,  265-280. 

tropic atmosphere. J. Meteor. 6, 105-122. 

in a gas. N.A.C.A. Tech. Note, no. 2887, pp. 20-21. 

Press. 

Mech. 12, 397-407. 



Journal of Fluid Mechanics, Vol. 80, part 2 Plate 1 

FIGURE 2. Experiinerit 1 .  Initial state E = 0.33. Time after sotting Aw = 0:  
(a) 50 s ,  ( b )  80 s ,  (c) 110 s. 

DUNST (Facing p. 400) 
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FIGURE 3. Experimont 2. Initial state E = 0.66. Time after setting Au = 0: 
(a) 15 s, ( b )  30 s, ( c )  45 s. 

DUNST 
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FIGURE 4. Exporimoiit 3. Initial state e = 1.0. Tiiiic nftrr svtting Am = 0 :  
(a) 20 s, ( b )  35 s, ( c )  55 s. 

DUNST 

Plate 3 
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FIGTTRE 5. Expnrimrnt 4. Initial state t = 3.0. Time nftcr Rotting Aw = 0: 
(a) 15 s, (0) 20 s, ( c )  35 s. 

DLJTSST 
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FIGURE 6. Expcriinont 5. Initial stato E = 5.0. TiIno after setting A(,) = 0: 
(a) 25 s ,  ( b )  35 8, (c) 50 s. 

DUNST 

Plate 5 
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FIGURE 7. Experiment 6. Initial state 6 = 16-0. Time after setting Aw = 0: 
(a) 15 s ,  ( b )  40 s, (c) 55 s. 

DUNST 


